0%

贝叶斯思维统计建模的PYTHON学习法PDF下载

《贝叶斯思维统计建模的PYTHON学习法》

链接: https://pan.baidu.com/s/102PeKZTCcz7POpfF20Vv0g 提取码: 7t7x

  《贝叶斯思维 统计建模的Python学习法》帮助那些希望用数学工具解决实际问题的人们,仅有的要求可能就是懂一点概率知识和程序设计。而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别,垃圾邮件检测等常见的计算机问题领域。

  可是《贝叶斯思维 统计建模的Python学习法》实际上会远远扩大你的视野,即使不是一个计算机专业的人士,你也可以看到在战争环境下(二战德军坦克问题),法律问题上(肾肿瘤的假设验证),体育博彩领域(棕熊队和加人队NFL比赛问题)贝叶斯方法的威力。怎么从有限的信息判断德军装甲部队的规模,你所支持的球队有多大可能赢得冠军,在《龙与地下城》勇士中,你应当对游戏角色属性的很大值有什么样的期望,甚至在普通的彩弹射击游戏中,拥有一些贝叶斯思维也能帮助到你提高游戏水平。

  除此以外,《贝叶斯思维 统计建模的Python学习法》在共计15章的篇幅中讨论了怎样解决十几个现实生活中的实际问题。在这些问题的解决过程中,作者还潜移默化的帮助读者形成了建模决策的方法论,建模误差和数值误差怎么取舍,怎样为具体问题建立数学模型,如何抓住问题中的主要矛盾(模型中的关键参数),再一步一步的优化或者验证模型的有效性或者局限性。在这个意义上,这本书又是一本关于数学建模的成功样本。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

目录

第1章 贝叶斯定理 1

1.1 条件概率 1

1.2 联合概率 2

1.3 曲奇饼问题 2

1.4 贝叶斯定理 3

1.5 历时诠释 4

1.6 M&M豆问题 5

1.7 Monty Hall难题 6

1.8 讨论 8

第2章 统计计算 9

2.1 分布 9

2.2 曲奇饼问题 10

2.3 贝叶斯框架 11

2.4 Monty Hall难题 12

2.5 封装框架 13

2.6 M&M豆问题 14

2.7 讨论 15

2.8 练习 16

第3章 估计 17

3.1 骰子问题 17

3.2 火车头问题 18

3.3 怎样看待先验概率? 20

3.4 其他先验概率 21

3.5 置信区间 23

3.6 累积分布函数 23

3.7 德军坦克问题 24

3.8 讨论 24

3.9 练习 25

第4章 估计进阶 27

4.1 欧元问题 27

4.2 后验概率的概述 28

4.3 先验概率的湮没 29

4.4 优化 31

4.5 Beta分布 32

4.6 讨论 34

4.7 练习 34

第5章 胜率和加数 37

5.1 胜率 37

5.2 贝叶斯定理的胜率形式 38

5.3 奥利弗的血迹 39

5.4 加数 40

5.5 最大化 42

5.6 混合分布 45

5.7 讨论 47

第6章 决策分析 49

6.1 “正确的价格”问题 49

6.2 先验概率 50

6.3 概率密度函数 50

6.4 PDF的表示 51

6.5 选手建模 53

6.6 似然度 55

6.7 更新 55

6.8 最优出价 57

6.9 讨论 59

第7章 预测 61

7.1 波士顿棕熊队问题 61

7.2 泊松过程 62

7.3 后验 63

7.4 进球分布 64

7.5 获胜的概率 66

7.6 突然死亡法则 66

7.7 讨论 68

7.8 练习 69

第8章 观察者的偏差 71

8.1 红线问题 71

8.2 模型 71

8.3 等待时间 73

8.4 预测等待时间 75

8.5 估计到达率 78

8.6 消除不确定性 80

8.7 决策分析 81

8.8 讨论 83

8.9 练习 84

第9章 二维问题 85

9.1 彩弹 85

9.2 Suite对象 85

9.3 三角学 87

9.4 似然度 88

9.5 联合分布 89

9.6 条件分布 90

9.7 置信区间 91

9.8 讨论 93

9.9 练习 94

第10章 贝叶斯近似计算 95

10.1 变异性假说 95

10.2 均值和标准差 96

10.3 更新 98

10.4 CV的后验分布 98

10.5 数据下溢 99

10.6 对数似然 100

10.7 一个小的优化 101

10.8 ABC(近似贝叶斯计算) 102

10.9 估计的可靠性 104

10.10 谁的变异性更大? 105

10.11 讨论 107

10.12 练习 108

第11章 假设检验 109

11.1 回到欧元问题 109

11.2 来一个公平的对比 110

11.3 三角前验 111

11.4 讨论 112

11.5 练习 113

第12章 证据 115

12.1 解读SAT成绩 115

12.2 比例得分SAT 115

12.3 先验 116

12.4 后验 117

12.5 一个更好的模型 119

12.6 校准 121

12.7 效率的后验分布 122

12.8 预测分布 123

12.9 讨论 124

第13章 模拟 127

13.1 肾肿瘤的问题 127

13.2 一个简化模型 128

13.3 更普遍的模型 130

13.4 实现 131

13.5 缓存联合分布 132

13.6 条件分布 133

13.7 序列相关性 135

13.8 讨论 138

第14章 层次化模型 139

14.1 盖革计数器问题 139

14.2 从简单的开始 140

14.3 分层模型 141

14.4 一个小优化 142

14.5 抽取后验 142

14.6 讨论 144

14.7 练习 144

第15章 处理多维问题 145

15.1 脐部细菌 145

15.2 狮子,老虎和熊 145

15.3 分层版本 148

15.4 随机抽样 149

15.5 优化 150

15.6 堆叠的层次结构 151

15.7 另一个问题 153

15.8 还有工作要做 154

15.9 肚脐数据 156

15.10 预测分布 158

15.11 联合后验 161

15.12 覆盖 162

15.13 讨论 164


最后,这里为大家准备了几百本的互联网电子书,有需要的过来取吧。点击获取

本页书籍均来自网络,如有侵权,请联系我立即删除。我的邮箱:yaojianguolq@163.com

------ 全文结束------