0%

Spark快速大数据分析PDF下载

《Spark快速大数据分析》

链接: https://pan.baidu.com/s/1Vk0DSbD_x70BqghyU2hlaA 提取码: i6av

《Spark快速大数据分析》由 Spark 开发者及核心成员共同打造,讲解了网络大数据时代应运而生的、能高效迅捷地分析处理数据的工具——Spark,它带领读者快速掌握用 Spark 收集、计算、简化和保存海量数据的方法,学会交互、迭代和增量式分析,解决分区、数据本地化和自定义序列化等问题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

目录

推荐序  xi

译者序  xiv

序  xvi

前言  xvii

第1章 Spark数据分析导论  1

1.1 Spark是什么  1

1.2 一个大一统的软件栈  2

1.2.1 Spark Core  2

1.2.2 Spark SQL  3

1.2.3 Spark Streaming  3

1.2.4 MLlib  3

1.2.5 GraphX  3

1.2.6 集群管理器  4

1.3 Spark的用户和用途  4

1.3.1 数据科学任务  4

1.3.2 数据处理应用  5

1.4 Spark简史  5

1.5 Spark的版本和发布  6

1.6 Spark的存储层次  6

第2章 Spark下载与入门  7

2.1 下载Spark  7

2.2 Spark中Python和Scala的shell  9

2.3 Spark 核心概念简介  12

2.4 独立应用  14

2.4.1 初始化SparkContext  15

2.4.2 构建独立应用  16

2.5 总结  19

第3章 RDD编程  21

3.1 RDD基础  21

3.2 创建RDD  23

3.3 RDD操作  24

3.3.1 转化操作  24

3.3.2 行动操作  26

3.3.3 惰性求值  27

3.4 向Spark传递函数  27

3.4.1 Python  27

3.4.2 Scala  28

3.4.3 Java  29

3.5 常见的转化操作和行动操作  30

3.5.1 基本RDD  30

3.5.2 在不同RDD类型间转换  37

3.6 持久化( 缓存)  39

3.7 总结  40

第4章 键值对操作  41

4.1 动机  41

4.2 创建Pair RDD  42

4.3 Pair RDD的转化操作  42

4.3.1 聚合操作  45

4.3.2 数据分组  49

4.3.3 连接  50

4.3.4 数据排序  51

4.4 Pair RDD的行动操作  52

4.5 数据分区(进阶)  52

4.5.1 获取RDD的分区方式  55

4.5.2 从分区中获益的操作  56

4.5.3 影响分区方式的操作  57

4.5.4 示例:PageRank  57

4.5.5 自定义分区方式  59

4.6 总结  61

第5章 数据读取与保存  63

5.1 动机  63

5.2 文件格式  64

5.2.1 文本文件  64

5.2.2 JSON  66

5.2.3 逗号分隔值与制表符分隔值  68

5.2.4 SequenceFile  71

5.2.5 对象文件  73

5.2.6 Hadoop输入输出格式  73

5.2.7 文件压缩  77

5.3 文件系统  78

5.3.1 本地/“常规”文件系统  78

5.3.2 Amazon S3  78

5.3.3 HDFS  79

5.4 Spark SQL中的结构化数据  79

5.4.1 Apache Hive  80

5.4.2 JSON  80

5.5 数据库  81

5.5.1 Java数据库连接  81

5.5.2 Cassandra  82

5.5.3 HBase  84

5.5.4 Elasticsearch  85

5.6 总结  86

第6章 Spark编程进阶  87

6.1 简介  87

6.2 累加器  88

6.2.1 累加器与容错性  90

6.2.2 自定义累加器  91

6.3 广播变量  91

6.4 基于分区进行操作  94

6.5 与外部程序间的管道  96

6.6 数值RDD 的操作  99

6.7 总结  100

第7章 在集群上运行Spark  101

7.1 简介  101

7.2 Spark运行时架构  101

7.2.1 驱动器节点  102

7.2.2 执行器节点  103

7.2.3 集群管理器  103

7.2.4 启动一个程序  104

7.2.5 小结  104

7.3 使用spark-submit 部署应用  105

7.4 打包代码与依赖  107

7.4.1 使用Maven构建的用Java编写的Spark应用  108

7.4.2 使用sbt构建的用Scala编写的Spark应用  109

7.4.3 依赖冲突   111

7.5 Spark应用内与应用间调度  111

7.6 集群管理器  112

7.6.1 独立集群管理器  112

7.6.2 Hadoop YARN  115

7.6.3 Apache Mesos  116

7.6.4 Amazon EC2  117

7.7 选择合适的集群管理器  120

7.8 总结  121

第8章 Spark调优与调试  123

8.1 使用SparkConf配置Spark  123

8.2 Spark执行的组成部分:作业、任务和步骤  127

8.3 查找信息  131

8.3.1 Spark网页用户界面  131

8.3.2 驱动器进程和执行器进程的日志  134

8.4 关键性能考量  135

8.4.1 并行度  135

8.4.2 序列化格式  136

8.4.3 内存管理  137

8.4.4 硬件供给  138

8.5 总结  139

第9章 Spark SQL  141

9.1 连接Spark SQL  142

9.2 在应用中使用Spark SQL  144

9.2.1 初始化Spark SQL  144

9.2.2 基本查询示例  145

9.2.3 SchemaRDD  146

9.2.4 缓存  148

9.3 读取和存储数据  149

9.3.1 Apache Hive  149

9.3.2 Parquet  150

9.3.3 JSON  150

9.3.4 基于RDD  152

9.4 JDBC/ODBC服务器  153

9.4.1 使用Beeline  155

9.4.2 长生命周期的表与查询  156

9.5 用户自定义函数  156

9.5.1 Spark SQL UDF  156

9.5.2 Hive UDF  157

9.6 Spark SQL性能  158

9.7 总结  159

第10章 Spark Streaming  161

10.1 一个简单的例子  162

10.2 架构与抽象  164

10.3 转化操作  167

10.3.1 无状态转化操作  167

10.3.2 有状态转化操作  169

10.4 输出操作  173

10.5 输入源  175

10.5.1 核心数据源  175

10.5.2 附加数据源  176

10.5.3 多数据源与集群规模  179

10.6 24/7不间断运行  180

10.6.1 检查点机制  180

10.6.2 驱动器程序容错  181

10.6.3 工作节点容错  182

10.6.4 接收器容错  182

10.6.5 处理保证  183

10.7 Streaming用户界面  183

10.8 性能考量  184

10.8.1 批次和窗口大小  184

10.8.2 并行度  184

10.8.3 垃圾回收和内存使用  185

10.9 总结  185

第11章 基于MLlib的机器学习  187

11.1 概述  187

11.2 系统要求  188

11.3 机器学习基础  189

11.4 数据类型  192

11.5 算法  194

11.5.1 特征提取  194

11.5.2 统计  196

11.5.3 分类与回归  197

11.5.4 聚类  202

11.5.5 协同过滤与推荐  203

11.5.6 降维  204

11.5.7 模型评估  206

11.6 一些提示与性能考量  206

11.6.1 准备特征  206

11.6.2 配置算法  207

11.6.3 缓存RDD以重复使用  207

11.6.4 识别稀疏程度  207

11.6.5 并行度  207

11.7 流水线API  208

11.8 总结  209

作者简介  210

封面介绍  210


最后,这里为大家准备了几百本的互联网电子书,有需要的过来取吧。点击获取

本页书籍均来自网络,如有侵权,请联系我立即删除。我的邮箱:yaojianguolq@163.com

------ 全文结束------