0%

Tensorflow实战Google深度学习框架PDF下载

《Tensorflow实战Google深度学习框架》

链接: https://pan.baidu.com/s/1wJ0h86DA3kNf_8smoPNPeA 提取码: ybr9

√ 前谷歌专家、现Tensorflow创业新贵,新版力邀现谷歌专家加盟,共话新版核心技术与前沿案例。

√ 本书前版作为业界首著伴随Tensorflow火遍全球,旨在面向生产|商业场景,彻底贯通原理|实践。

√ 深入原理|走访主创|结合真实项目,AI、ML团队争相赞誉推荐,与Tensorflow一道成为事实标准。

√ 代码全面升级为1.4+版,重点关注新版功能,增设专题论述TF高层封装和深度学习自然语言应用。

TensorFlow是谷歌2015年开源的主流深度学习框架,目前已得到广泛应用。《TensorFlow:实战Google深度学习框架(第2版)》为TensorFlow入门参考书,旨在帮助读者以快速、有效的方式上手TensorFlow和深度学习。书中省略了烦琐的数学模型推导,从实际应用问题出发,通过具体的TensorFlow示例介绍如何使用深度学习解决实际问题。书中包含深度学习的入门知识和大量实践经验,是走进这个前沿、热门的人工智能领域的优选参考书。

第2版将书中所有示例代码从TensorFlow 0.9.0升级到了TensorFlow 1.4.0。在升级API的同时,第2版也补充了更多只有TensorFlow 1.4.0才支持的功能。另外,第2版还新增两章分别介绍TensorFlow高层封装和深度学习在自然语言领域应用的内容。

《TensorFlow:实战Google深度学习框架(第2版)》适用于想要使用深度学习或TensorFlow的数据科学家、工程师,希望了解大数据平台工程师,对人工智能、深度学习感兴趣的计算机相关从业人员及在校学生等

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

目录

第1章 深度学习简介

1.1 人工智能、机器学习与深度学习

1.2 深度学习的发展历程

1.3 深度学习的应用

1.3.1 计算机视觉

1.3.2 语音识别

1.3.3 自然语言处理

1.3.4 人机博弈

1.4 深度学习工具介绍和对比

小结

第2章 TensorFlow环境搭建

2.1 TensorFlow的主要依赖包

2.1.1 Protocol Buffer

2.1.2 Bazel

2.2 TensorFlow安装

2.2.1 使用Docker安装

2.2.2 使用pip安装

2.2.3 从源代码编译安装

2.3 TensorFlow测试样例

小结

第3章 TensorFlow入门

3.1 TensorFlow计算模型——计算图

3.1.1 计算图的概念

3.1.2 计算图的使用

3.2 TensorFlow数据模型——张量

3.2.1 张量的概念

3.2.2 张量的使用

3.3 TensorFlow运行模型——会话

3.4 TensorFlow实现神经网络

3.4.1 TensorFlow游乐场及神经网络简介

3.4.2 前向传播算法简介

3.4.3 神经网络参数与TensorFlow变量

3.4.4 通过TensorFlow训练神经网络模型

3.4.5 完整神经网络样例程序

小结

第4章 深层神经网络

4.1 深度学习与深层神经网络

4.1.1 线性模型的局限性

4.1.2 激活函数实现去线性化

4.1.3 多层网络解决异或运算

4.2 损失函数定义

4.2.1 经典损失函数

4.2.2 自定义损失函数

4.3 神经网络优化算法

4.4 神经网络进一步优化

4.4.1 学习率的设置

4.4.2 过拟合问题

4.4.3 滑动平均模型

小结

第5章 MNIST数字识别问题

5.1 MNIST数据处理

5.2 神经网络模型训练及不同模型结果对比

5.2.1 TensorFlow训练神经网络

5.2.2 使用验证数据集判断模型效果

5.2.3 不同模型效果比较

5.3 变量管理

5.4 TensorFlow模型持久化

5.4.1 持久化代码实现

5.4.2 持久化原理及数据格式

5.5 TensorFlow最佳实践样例程序

小结

第6章 图像识别与卷积神经网络

6.1 图像识别问题简介及经典数据集

6.2 卷积神经网络简介

6.3 卷积神经网络常用结构

6.3.1 卷积层

6.3.2 池化层

6.4 经典卷积网络模型

6.4.1 LeNet-5模型

6.4.2 Inception-v3模型

6.5 卷积神经网络迁移学习

6.5.1 迁移学习介绍

6.5.2 TensorFlow实现迁移学习

小结

第7章 图像数据处理

7.1 TFRecord输入数据格式

7.1.1 TFRecord格式介绍

7.1.2 TFRecord样例程序

7.2 图像数据处理

7.2.1 TensorFlow图像处理函数

7.2.2 图像预处理完整样例

7.3 多线程输入数据处理框架

7.3.1 队列与多线程

7.3.2 输入文件队列

7.3.3 组合训练数据(batching)

7.3.4 输入数据处理框架

7.4 数据集(Dataset)

7.4.1 数据集的基本使用方法

7.4.2 数据集的高层操作

小结

第8章 循环神经网络

8.1 循环神经网络简介

8.2 长短时记忆网络(LSTM)结构

8.3 循环神经网络的变种

8.3.1 双向循环神经网络和深层循环神经网络

8.3.2 循环神经网络的dropout

8.4 循环神经网络样例应用

小结

第9章 自然语言处理

9.1 语言模型的背景知识

9.1.1 语言模型简介

9.1.2 语言模型的评价方法

9.2 神经语言模型

9.2.1 PTB数据集的预处理

9.2.2 PTB数据的batching方法

9.2.3 基于循环神经网络的神经语言模型

9.3 神经网络机器翻译

9.3.1 机器翻译背景与Seq2Seq模型介绍

9.3.2 机器翻译文本数据的预处理

9.3.3 Seq2Seq模型的代码实现

9.3.4 注意力机制

小结

第10章 TensorFlow高层封装

10.1 TensorFlow高层封装总览

10.2 Keras介绍

10.2.1 Keras基本用法

10.2.2 Keras高级用法

10.3 Estimator介绍

10.3.1 Estimator基本用法

10.3.2 Estimator自定义模型

10.3.3 使用数据集(Dataset)作为Estimator输入

小结

第11章 TensorBoard可视化

11.1 TensorBoard简介

11.2 TensorFlow计算图可视化

11.2.1 命名空间与TensorBoard图上节点

11.2.2 节点信息

11.3 监控指标可视化

11.4 高维向量可视化

小结

第12章 TensorFlow计算加速

12.1 TensorFlow使用GPU

12.2 深度学习训练并行模式

12.3 多GPU并行

12.4 分布式TensorFlow

12.4.1 分布式TensorFlow原理

12.4.2 分布式TensorFlow模型训练

小结


最后,这里为大家准备了几百本的互联网电子书,有需要的过来取吧。点击获取

本页书籍均来自网络,如有侵权,请联系我立即删除。我的邮箱:yaojianguolq@163.com

------ 全文结束------