0%

百面机器学习PDF下载

《百面机器学习》

链接:https://pan.baidu.com/s/1fZgli2Lkd00XcStqm_36xQ

《百面机器学习 算法工程师带你去面试》

人工智能领域正在以超乎人们想象的速度发展,本书赶在人工智能彻底占领世界之前完成编写,实属万幸。

书中收录了超过100道机器学习算法工程师的面试题目和解答,其中大部分源于Hulu算法研究岗位的真实场景。本书从日常工作、生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识,而且还包含了成为出众算法工程师的相关技能,更重要的是凝聚了笔者对人工智能领域的一颗热忱之心,旨在培养读者发现问题、解决问题、扩展问题的能力,建立对机器学习的热爱,共绘人工智能世界的宏伟蓝图。

“不积跬步,无以至千里”,本书将从特征工程、模型评估、降维等经典机器学习领域出发,构建一个算法工程师必-备的知识体系;见神经网络、强化学习、生成对抗网络等新科研进展之微,知深度学习领域胜败兴衰之著;“博观而约取,厚积而薄发”,在末一章为读者展示生活中各种引领时代的人工智能应用。

有问题拿不到直接联系作者哦!

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

目录

《百面机器学习 算法工程师带你去面试》

推荐序

前言

机器学习算法工程师的自我修养

第 1章 特征工程

第 1节 特征归一化

第 2节 类别型特征

第3节 高维组合特征的处理

第4节 组合特征

第5节 文本表示模型

第6节 Word2Vec

第7节 图像数据不足时的处理方法

第 2章 模型评估

第 1节 评估指标的局限性

第 2节 ROC 曲线

第3节 余弦距离的应用

第4节 A/B 测试的陷阱

第5节 模型评估的方法

第6节 超参数调优

第7节 过拟合与欠拟合

第3章 经典算法

第 1节 支持向量机

第 2节 逻辑回归

第3节 决策树

第4章 降维

第 1节 PCA 最大方差理论

第 2节 PCA 最小平方误差理论

第3节 线性判别分析

第4节 线性判别分析与主成分分析

第5章 非监督学习

第 1节 K 均值聚类

第 2节 高斯混合模型

第3节 自组织映射神经网络

第4节 非监督学习算法的评估

第6章 概率图模型

第 1节 概率图模型的联合概率分布

第 2节 概率图表示

第3节 生成式模型与判别式模型

第4节 马尔可夫模型

第5节 主题模型

第7章 优化算法

第 1节 有监督学习的损失函数

第 2节 机器学习中的优化问题

第3节 经典优化算法

第4节 梯度验证

第5节 随机梯度下降法

第6节 随机梯度下降法的加速

第7节 L1 正则化与稀疏性

第8章 采样

第 1节 采样的作用

第 2节 均匀分布随机数

第3节 常见的采样方法

第4节 高斯分布的采样

第5节 马尔科夫蒙特卡洛采样法

第6节 贝叶斯网络的采样

第7节 不均衡样本集的重采样

第9章 前向神经网络

第 1节 多层感知机与布尔函数

第 2节 深度神经网络中的激活函数

第3节 多层感知机的反向传播算法

第4节 神经网络训练技巧

第5节 深度卷积神经网络

第6节 深度残差网络

第 10章 循环神经网络

第 1节 循环神经网络和卷积神经网络

第 2节 循环神经网络的梯度消失问题

第3节 循环神经网络中的激活函数

第4节 长短期记忆网络

第5节 Seq2Seq 模型

第6节 注意力机制

第 11章 强化学习

第 1节 强化学习基础

第 2节 视频游戏里的强化学习

第3节 策略梯度

第4节 探索与利用

第 12章 集成学习

第 1节 集成学习的种类

第 2节 集成学习的步骤和例子

第3节 基分类器

第4节 偏差与方差

第5节 梯度提升决策树的基本原理

第6节 XGBoost 与GBDT 的联系和区别

第 13章 生成式对抗网络

第 1节 初识GANs 的秘密

第 2节 WGAN:抓住低维的幽灵

第3节 DCGAN:当GANs 遇上卷积

第4节 ALI:包揽推断业务

第5节 IRGAN:生成离散样本

第6节 SeqGAN:生成文本序列

第 14章 人工智能的热门应用

第 1节 计算广告

第 2节 游戏中的人工智能

第3节 AI 在自动驾驶中的应用

第4节 机器翻译

第5节 人机交互中的智能计算

后记

作者随笔

参考文献

《百面深度学习 算法工程师带你去面试》

目录

前言

第 一部分 算法和模型

第 1章 卷积神经网络

01 卷积基础知识

02 卷积的变种

03 卷积神经网络的整体结构

04 卷积神经网络的基础模块

参考文献

第 2章 循环神经网络

01 循环神经网络与序列建模

02 循环神经网络中的Dropout

03 循环神经网络中的长期依赖问题

04 长短期记忆网络

05 Seq2Seq 架构

参考文献

第3章 图神经网络

01 图神经网络的基本结构

02 图神经网络在推荐系统中的应用

03 图神经网络的推理能力

参考文献

第4章 生成模型

01 深度信念网络与深度波尔兹曼机

02 变分自编码器基础知识

03 变分自编码器的改进

04 生成式矩匹配网络与深度自回归网络

参考文献

第5章 生成式对抗网络

01 生成式对抗网络的基本原理

02 生成式对抗网络的改进

03 生成式对抗网络的效果评估

04 生成式对抗网络的应用

参考文献

第6章 强化学习

01 强化学习基础知识

02 强化学习算法

03 深度强化学习

04 强化学习的应用

参考文献

第7章 元学习

01 元学习的主要概念

02 元学习的主要方法

03 元学习的数据集准备

04 元学习的两个简单模型

05 基于度量学习的元学习模型

06 基于神经图灵机的元学习模型

07 基于学习优化器的元学习模型

08 基于学习初始点的元学习模型

参考文献

第8章 自动化机器学习

01 自动化机器学习的基本概念

02 模型和超参数自动化调优

03 神经网络架构搜索

参考文献

第二部分 应用

第9章 计算机视觉

01 物体检测

02 图像分割

03 光学字符识别

04 图像标注

05 人体姿态识别

参考文献

第 10章 自然语言处理

01 语言的特征表示

02 机器翻译

03 问答系统

04 对话系统

参考文献

第 11章 推荐系统

01 推荐系统基础

02 推荐系统设计与算法

03 推荐系统评估

参考文献

第 12章 计算广告

01 点击率预估

02 广告召回

03 广告投放策略

参考文献

第 13章 视频处理

01 视频编解码

02 视频监控

03 图像质量评价

04 超分辨率重建

05 网络通信

参考文献

第 14章 计算机听觉

01 音频信号的特征提取

02 自动语音识别

03 音频事件识别

参考文献

第 15章 自动驾驶

01 自动驾驶的基本概念

02 端到端的自动驾驶模型

03 自动驾驶的决策系统

参考文献

作者随笔


最后,这里为大家准备了几百本的互联网电子书,有需要的过来取吧。点击获取

本页书籍均来自网络,如有侵权,请联系我立即删除。我的邮箱:yaojianguolq@163.com

------ 全文结束------