0%

《机器学习》周志华-西瓜书PDF 下载

书籍名称

《机器学习》周志华-西瓜书 PDF

链接:https://pan.baidu.com/s/1oTJjTkxK0PuV2nRExq1wcA 提取码:odp0

随时随地资源获取渠道「推荐」

扫码微信打开,随时随地轻点即可获取资源

机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。

本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。

目录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

第1章 1

1.1 引言 1

1.2 基本术 2

1.3 假设空间 4

1.4 归纳偏好 6

1.5 发展历程 10

1.6 应用现状 13

1.7 阅读材料 16

习题 19

参考文献 20

休息一会儿 22

第2章 模型评估与选择 23

2.1 经验误差与过拟合 23

2.2 评估方法 24

2.2.1 留出法 25

2.2.2 交叉验证法 26

2.2.3 自助法 27

2.2.4 调参与最终模型 28

2.3 性能度量 28

2.3.1 错误率与精度 29

2.3.2 查准率、查全率与F1 30

2.3.3 ROC与AUC 33

2.3.4 代价敏感错误率与代价曲线 35

2.4 比较检验 37

2.4.1 假设检验 37

2.4.2 交叉验证t检验 40

2.4.3 McNemar检验 41

2.4.4 Friedman检验与后续检验 42

2.5 偏差与方差 44

2.6 阅读材料 46

习题 48

参考文献 49

休息一会儿 51

第3章 线性模型 53

3.1 基本形式 53

3.2 线性回归 53

3.3 对数几率回归 57

3.4 线性判别分析 60

3.5 多分类学习 63

3.6 类别不平衡问题 66

3.7 阅读材料 67

习题 69

参考文献 70

休息一会儿 72

第4章 决策树 73

4.1 基本流程 73

4.2 划分选择 75

4.2.1 信息增益 75

4.2.2 增益率 77

4.2.3 基尼指数 79

4.3 剪枝处理 79

4.3.1 预剪枝 80

4.3.2 后剪枝 82

4.4 连续与缺失值 83

4.4.1 连续值处理 83

4.4.2 缺失值处理 85

4.5 多变量决策树 88

4.6 阅读材料 92

习题 93

参考文献 94

休息一会儿 95

第5章 神经网络 97

5.1 神经元模型 97

5.2 感知机与多层网络 98

5.3 误差逆传播算法 101

5.4 全局最小与局部极小 106

5.5 其他常见神经网络 108

5.5.1 RBF网络 108

5.5.2 ART网络 108

5.5.3 SOM网络 109

5.5.4 级联相关网络 110

5.5.5 Elman网络 111

5.5.6 Boltzmann机 111

5.6 深度学习 113

5.7 阅读材料 115

习题 116

参考文献 117

休息一会儿 120

第6章 支持向量机 121

6.1 间隔与支持向量 121

6.2 对偶问题 123

6.3 核函数 126

6.4 软间隔与正则化 129

6.5 支持向量回归 133

6.6 核方法 137

6.7 阅读材料 139

习题 141

参考文献 142

休息一会儿 145

第7章 贝叶斯分类器 147

7.1 贝叶斯决策论 147

7.2 极大似然估计 149

7.3 朴素贝叶斯分类器 150

7.4 半朴素贝叶斯分类器 154

7.5 贝叶斯网 156

7.5.1 结构 157

7.5.2 学习 159

7.5.3 推断 161

7.6 EM算法 162

7.7 阅读材料 164

习题 166

参考文献 167

休息一会儿 169

第8章 集成学习 171

8.1 个体与集成 171

8.2 Boosting 173

8.3 Bagging与随机森林 178

8.3.1 Bagging 178

8.3.2 随机森林 179

8.4 结合策略 181

8.4.1 平均法 181

8.4.2 投票法 182

8.4.3 学习法 183

8.5 多样性 185

8.5.1 误差--分歧分解 185

8.5.2 多样性度量 186

8.5.3 多样性增强 188

8.6 阅读材料 190

习题 192

参考文献 193

休息一会儿 196

第9章 聚类 197

9.1 聚类任务 197

9.2 性能度量 197

9.3 距离计算 199

9.4 原型聚类 202

9.4.1 k均值算法 202

9.4.2 学习向量量化 204

9.4.3 高斯混合聚类 206

9.5 密度聚类 211

9.6 层次聚类 214

9.7 阅读材料 217

习题 220

参考文献 221

休息一会儿 224

第10章 降维与度量学习 225

10.1 k近邻学习 225

10.2 低维嵌入 226

10.3 主成分分析 229

10.4 核化线性降维 232

10.5 流形学习 234

10.5.1 等度量映射 234

10.5.2 局部线性嵌入 235

10.6 度量学习 237

10.7 阅读材料 240

习题 242

参考文献 243

休息一会儿 246

第11章 特征选择与稀疏学习 247

11.1 子集搜索与评价 247

11.2 过滤式选择 249

11.3 包裹式选择 250

11.4 嵌入式选择与L$_1$正则化 252

11.5 稀疏表示与字典学习 254

11.6 压缩感知 257

11.7 阅读材料 260

习题 262

参考文献 263

休息一会儿 266

第12章 计算学习理论 267

12.1 基础知识 267

12.2 PAC学习 268

12.3 有限假设空间 270

12.3.1 可分情形 270

12.3.2 不可分情形 272

12.4 VC维 273

12.5 Rademacher复杂度 279

12.6 稳定性 284

12.7 阅读材料 287

习题 289

参考文献 290

休息一会儿 292

第13章 半监督学习 293

13.1 未标记样本 293

13.2 生成式方法 295

13.3 半监督SVM 298

13.4 图半监督学习 300

13.5 基于分歧的方法 304

13.6 半监督聚类 307

13.7 阅读材料 311

习题 313

参考文献 314

休息一会儿 317

第14章 概率图模型 319

14.1 隐马尔可夫模型 319

14.2 马尔可夫随机场 322

14.3 条件随机场 325

14.4 学习与推断 328

14.4.1 变量消去 328

14.4.2 信念传播 330

14.5 近似推断 331

14.5.1 MCMC采样 331

14.5.2 变分推断 334

14.6 话题模型 337

14.7 阅读材料 339

习题 341

参考文献 342

休息一会儿 345

第15章 规则学习 347

15.1 基本概念 347

15.2 序贯覆盖 349

15.3 剪枝优化 352

15.4 一阶规则学习 354

15.5 归纳逻辑程序设计 357

15.5.1 最小一般泛化 358

15.5.2 逆归结 359

15.6 阅读材料 363

习题 365

参考文献 366

休息一会儿 369

第16章 强化学习 371

16.1 任务与奖赏 371

16.2 $K$-摇臂赌博机 373

16.2.1 探索与利用 373

16.2.2 $\epsilon $-贪心 374

16.2.3 Softmax 375

16.3 有模型学习 377

16.3.1 策略评估 377

16.3.2 策略改进 379

16.3.3 策略迭代与值迭代 381

16.4 免模型学习 382

16.4.1 蒙特卡罗强化学习 383

16.4.2 时序差分学习 386

16.5 值函数近似 388

16.6 模仿学习 390

16.6.1 直接模仿学习 391

16.6.2 逆强化学习 391

16.7 阅读材料 393

习题 394

参考文献 395

休息一会儿 397

附录 399

A 矩阵 399

B 优化 403

C 概率分布 409

后记 417

索引 419

最后

这里为大家准备了几百本的互联网电子书,有需要的过来取吧。点击获取

本页书籍均来自网络,如有侵权,请联系我立即删除。我的邮箱:yaojianguolq@163.com

------ 全文结束------